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ABSTRACT 

A reliable tension softening curve is the essential constitutive law for the purpose of crack 
analysis of concrete in order to realize sustainable infrastructures. In this paper, such 
polynomials are proposed to predict the tension softening curve for concrete of any arbitrary 
mixture based on the reliable test data obtained by the authors. Three variables of mixture, 
i.e. W/C, s/a and Gmax were selected which are considered to affect the tensile properties of 
concrete most. The mixture of usual concrete is within a rectangular prism in three-
dimensional space of the three variables. At first the interpolation function of 8 term 
polynomials was adopted to predict an inside value of the rectangular prism by 8 data of the 
apices. After additional regression analyses, the linear polynomials of 4 terms were finally 
selected as the best regression function for the prediction in order to avoid excessive 
influences by the experimental error. 
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INTRODUCTIONS 

In the analysis of shrinkage cracks which is essential in durable concrete and sustainable 
constructions, the tension softening curve is indispensable. The best way to obtain the 
tension softening curve is to perform a uniaxial tension test. This test directly provides the 
tension softening curve and tensile strength from an identical specimen without any inverse 
analysis. However, there are only few investigators to perform the test. Because, the test 
needs an expensive loading machine and special equipments to minimize some inevitable 
flexures that occur during the test.  

The authors have proposed a database for the prediction of the tension softening curve of an 
arbitrary concrete made from crushed andesite based on the experimental data (Akita, 2010). 
With such a database, anyone can predict the tension softening curve without performing the 
test only when the mixture of the concrete is known. Such database is very beneficial for 
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researchers and designers who want to analyze crack behavior or fracture behavior of some 
concrete structures. 

In order to obtain a good prediction from the database, some regressions, but not 
interpolations, should be adopted and based on some reliable test data. Because, actual data 
always include some experimental error whereas an interpolation is adequate only when the 
experimental data are exact. The authors have established a reliable test method within the 
last decade to provide the necessary data for the database (Akita, 2003, 2005). Three 
representative variables of mix proportion, i.e. W/C, s/a and Gmax were selected which are 
considered to affect the tensile properties of concrete most. The mix proportion of usual 
concrete is within a rectangular prism in three-dimensional space of the three variables.  

In this paper, the process to arrive to the best regression function is presented by using some 
concrete examples. At first the interpolation function of 8 term polynomials was adopted to 
predict an inside value of the prism by 8 data of the apices. Then 7 reference points were 
added in the center of the 6 faces and the center of the prism and the constants of the 
regression function were determined by the least square method. Also the perfect quadratic 
polynomials of 10 terms were tried to reduce the residuals of the experimental data. Finally 
the perfect linear polynomials of 4 terms were selected as the best regression function for the 
prediction in order to avoid excessive influences by the experimental error.  

EXPRESSION FOR TENSION SOFTENING CURVE 

In order to determine a basic function to express the tension softening curve, 21 tension 
softening curves shown in Figure 1 were adopted. They were obtained from the experiments 
using the specimens of an identical mixture during 2001 to 2005. The curves are expressed 
by a normalized form of σN and wN in order to make it easy to get the average of the curves. 
Where σN equals σ/ ft, σ is tensile stress or cohesive stress and ft is tensile strength, and wN 
equals w/wc, w is crack opening displacement (COD) and wc is critical crack opening 
displacement. Some basic functions were proposed by Reinhardt et al. (1986) and Li et al. 
(2002). However, both of the proposed functions do not match the experimental data of the 
authors directly. Thus, the following basic function (Equation 1) was assumed by improving 
the function proposed by Li et al. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 1. 21 tension softening curves              Figure 2. Approximation curve by least square 
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where A to E are constants or undetermined coefficients. After the 21 curves were averaged 
in 11 points (open circles) shown in Figure 2, these constants were determined by applying 
the least square method to fit the curve to the points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Initial parts of 21 curves          Figure 4. Initial part of the approximation 
curve 

 
The resulting curve agrees with the points precisely and is shown in Figure 2. In Figure 3 
and 4, the initial parts of the curves in Figure 1 and 2 are multiplied and shown, respectively. 
Because of the convex shape of the initial part of these curves, the first term in Equation 1 
was adopted. In addition, it is supposed that Equation 1 can be applied to any concrete made 
from crushed andesite when the constants A to E are appropriately chosen. 

REFERENCE MIXTURES 
The reference mixtures of concrete to use for the prediction of tension softening curves of 
any arbitrary mixture were determined as follows. Three variables of mixture such as water 
cement ratio W/C, sand aggregates ratio s/a and the maximum size of coarse aggregate Gmax 
were selected, because they were considered to affect the tensile properties of concrete most. 
As an ordinary concrete is within the range of W/C=40% to 60%, s/a=35% to 45% and 
Gmax=15mm to 25mm, the range is shown like the inside of the rectangular prism in Figure 5 
by 3-dimensional expression of 3 variables. Experiments were performed for 8 mixtures 
correlating to the apices of the rectangular prism at first, and then 6 mixtures were added 
correlating to the centers of all faces and the one other mixture correlating to the center of 
the prism. The prediction is the same procedure to determine the unknown value relating to 
an arbitrary point based on the known values of the reference points. The 15 reference 
mixtures for the present experiment are shown in Table 1 and Figure 5. Crushed andesite 
was adopted as coarse aggregates, because it was the most common in Japan.  
 
 
 
 



W/C s/a Gmax W

(%) (%) (mm) (kg/m3)
A1 40 35 25 142
A2 60 35 25 143
A3 40 45 25 150
A4 60 45 25 155
B1 40 35 15 160
B2 60 35 15 146
B3 40 45 15 160
B4 60 45 15 160
C1 40 40 20 160
C2 50 40 15 158
C3 50 35 20 146

C4 50 45 20 152

C5 50 40 25 153
C6 60 40 20 157
C7 50 40 20 163

Mix

Table 1. Mixtures of the reference concrete 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  3-D expression of 15 mixtures         
 
EXPERIMENT 

Five cylinders of φ100x200mm for the compression test, the same 5 cylinders for the 
splitting tension test and 5 prisms of 100x100x400mm for uniaxial tension test were 
cast from one mixture. The compression test and splitting tension test were 
performed at the age of 28 days following after the Japan Industry Standard. The  
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                Figure 6. Experimental set-up 
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uniaxial tension test was performed using a strain-controlled loading machine as 
shown in Figure 6. Flexures caused by load eccentricity and heterogeneity of 
concrete were both minimized by adjusting gear systems. In Figure 6, the adjusting 
gear systems and extensometers on four side faces are shown. The minimization of 
flexures is executed as follows during the test. When a certain side of a specimen is 
elongated more than the opposite side, the more elongated side should be contracted 
by turns of its adjusting gear until reaching a proper balance in elongation. Such a 
real time execution is indispensable to minimize flexures caused by the heterogeneity 
of concrete. Three hours per specimen were spent including necessary preparation. 
Thus, the tension tests of 5 specimens were performed on the age of 29 and 30 days. 
 
TEST RESULTS  
 
An example of load-deformation (P-δ) curves directly obtained from the uniaxial tension test 
belonging to a specimen of mixture B3 are shown in Figure 7. Ch2 and ch4 in the Figure 
mean two opposite face deformations and the nearly exact overlap of the two curves 
indicates that flexures are completely minimized. Figure 8 shows an example of 5 tension 
softening curves derived from the load-deformation curves of mixture B3. 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Load-deformation curves (h1207t1)          Figure 8. Tension softening curves (Mix B3) 

 

PREDICTION BY INTERPOLATION FUNCTION 
In order to predict the constants A to E in Equation (1) and the fracture mechanics 
parameters ft, wc and GF at any arbitrary point inside of the prism in Figure 5, Equation 2 was 
adopted at first in which V represents any constants and fracture mechanics parameters.  
     

hxyzgzxgyzexydzcybxa)z,y,x(V +++++++=                                                     (2) 
 
where a to h are constants or undetermined coefficients and x, y and z mean arbitrary values 
of W/C, s/a and Gmax respectively. Equation 2 is equivalent to a linear Lagrange interpolation 
formula modified to a 3-dimensional form. The constants a to h are determined by 
simultaneous 8 equations referring to x ,y, z and V of 8 apices. Then, V of arbitrary x, y and 
z is calculated by Eq.(2), i.e. V is predicted from 8 values of V on 8 apices. 
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Figure 9 is an example concerning to ft, where symbols indicate experimental values or 
reference values and lines are predicting values along the correlated edge of the prism. In 
rough observation, 4 lines are close to each other and intersect all the symbols, suggesting 
that the interpolation seems to give a good prediction. However, the experimental error is 
blindly ignored when the number of reference points or number of data equals to the number 
of undetermined coefficients in interpolation function. In other words, it means that such 
interpolation regards erroneous experimental values as exact ones and results to an unreliable 
prediction informing nothing about the experimental error. 
 
 
 
 
 
 
 
 
                                                                                                          
 
 
 
 
 
 
                                                                                                              
         Figure 9. Prediction of ft by Eq.(2)           Figure 10. Prediction in one-dimensional case 
 
It can be easily seen in simple one-dimensional examples in which Eq.(3) is a possible 
interpolation function and number of undetermined coefficients is two.  
 

bxa)x(V +=                                                                                                                       (3) 
 
When there are two reference points or two experimental data, the interpolation line becomes 
like Figure 10 a), and everything seems to be perfect. However, the coincidence of the line 
and two points mean neither the prediction is exact nor the experimental data are exact. On 
the other hand, the regression line in Figure 10 b) is more reliable than the former when one 
more reference point is added. This is because the regression line is the line in which the 
total residual becomes minimum based on three data including experimental error, but the 
interpolation line simply connect the two points without considering experimental error. 
 
PREDICTION BY REGRESSION FUNCTIONS 
In order to improve the prediction reliability, 7 reference mixtures, C1 to C7, were added to 
the original 8 mixture, A1 to A4, B1 to B4, as shown in Figure 5. As the number of  
constants a to h in Eq.(2) is smaller than the number of the reference points, the constants are 
determined by the least square method referring to 15 values of the reference mixtures. 
 
Figures 11 and 12 are the examples of the prediction concerning to fracture energy. In order 
to avoid complexity, they are shown by two Figures, namely the cases when s/a=35% in 
Figure 11 and when s/a=45% in Figure 12. By these two Figures, the variations of fracture 
energy in the prism concerning to 10 reference mixtures are expressed. In these Figures, the 
deviations of the experimental values (symbols) from the prediction values (lines) are small 
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in apices (A1 to B4), but a little larger in the centers (C3 and C4). This suggests that the 
quadratic terms of x, y and z are necessary in the regression function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Prediction of GF by Eq.(2) (s/a=35%)          Figure 12. GF by Eq.(2) (s/a=45%) 
 
So, such terms were added and the perfect quadratic polynomials shown in Eq.(4) were 
adopted as a prediction function next. 
 

222 jziyhxgzxgyzexydzcybxa)z,y,x(V +++++++++=                                   (4) 
 
An example which is concerning to the same mixtures as Figure 12 is shown in Figure 13. 
The curved regression lines are well fitting to the experimental values. This figure suggests 
that an excellent prediction was obtained by Eq.(4). However, it is revealed by another 
example that this recognition is erroneous.  
 
Figure 14 shows the variations of tensile strengths when s/a=35%. It also seems to be a very 
good prediction. However, the following consideration arrives at the opposite conclusion. It 
is well known that the compressive strength fc of concrete is proportional to C/W namely 1/x. 
On the other hand, the previous experiments by the authors show the relationship between ft 
and fc as Figure 15 and Eq. (5).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Prediction of GF by Eq. (4)                     Figure 14. Prediction of ft by Eq. (4) 
(s/a=45%)                                                                 (s/a=35%) 



60

80

100

120

35 40 45 50 55 60 65
W/C (%)

G
F
 (
N

/
m

)

A1 A2 Gmax=25mm

C3 Gmax=20mm

B1 B2 Gmax=15mm

0

2

4

6

8

0 20 40 60 80 100 120

fc (MPa)

f t
 (

M
P

a
)

15 Mix

Young age

High strength

Custom

Eq.(5)

802450 .
ct f.f =                                                                                                                    (5) 

 
From the both relationship, ft should be proportional to x－0.8 and convex to the downside 
despite that Figure 14 shows convex curves to the upside. It means that the regression lines 
are excessively affected by experimental error and reach an erroneous prediction. In general, 
it does not mean a better prediction when small deviations between experimental values and 
prediction values are established by increasing high order terms in regression function. In 
fact, if high order terms are added until the number of undetermined coefficients becomes 
the same as the number of reference data, all the deviations are completely zero but the 
prediction is rather erroneous. The situation is the same as Figure 10 a) when it is one-
dimensional problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 15. Relationship of ft and fc           Figure 16. Prediction of GF by Eq.(6) (s/a=35%) 
 
Finally, one more regression function which is the perfect linear polynomials of 4 terms was 
adopted as shown in Eq. (6). 
 

dzcybxa)z,t,x(V +++=                                                                                                 (6) 
 
The examples by this regression function are shown in Figure 16 and 17. The deviations of 
the experimental values from the prediction values appear larger than the former examples. 
However it remains indecisive which is a better prediction function Eq. (2) or Eq. (6). 
Unfortunately, the decisive factors are not so strong.  
 
One factor is that the variation in GF by using Eq. (2) is not the same along the edges for 
example when comparing two s/a in Figures 11 and 12. Where the gradient is steeper in A3-
A4 than in A1-A2 but it is less steep in B3-B4 than in B1-B2. The existence of these 
mutually opposite variations cannot be denied but it is considered unnatural. A possible 
consideration is that such opposite variations come from the reflection of the experimental 
error. 
 
Next factor is that 15 reference points are not enough to decide the curvature or gradient 
variation in 3-dimensional space. It means that an excessive reflection of the experimental 
error loses the common variation among all the reference points. Thus, the final conclusion 
is that the most appropriate regression function in this study is Eq. (6)   
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PREDICTION RESULT 
 
Figure 18 shows an example of the comparison of the predicted tension softening curve and 
the experimental curve. The predicted curve is calculated using all predicted values A to E, ft 
and wc, and the experimental one is the simple average of the five tension softening curves as 
shown in Figure 8. In this example the deviation of the two curves is the largest in 15 
mixtures. In spite of being the largest, the deviation is within the scattering of five curves in 
one mixture as shown in Figure 8. This shows that the present prediction is excellent despite 
that individual deviation of the constants A to E, ft and wc between predicted and the 
experimental are prominent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Prediction of ft by Eq.(4) (s/a=35%)          Figure 18. Comparison of two curves 
 
CONCLUSIONS 
 
A database to predict tension softening curve for concrete of arbitrary W/C, s/a and Gmax 
without performing a tension test was proposed. In the prediction based on 15 experimental 
data, the regression function of the perfect linear polynomials of 4 terms is considered to be 
the best.   
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