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ABSTRACT 

As an agriculture waste, rice husk ash (RHA) has been used a lot in construction industry to replace 
Portland cement. The main advantages of using RHA are the decrease of materials costs due to cement 
savings, environmental benefits related to the disposal of waste materials and the reduction of carbon 
dioxide emissions. In this paper, the application of RHA is extended to mitigate their early age autogenous 
shrinkage of high (ultra-high) performance concrete. The influence of particle size of RHA on the 
efficiency of mitigation of autogenous shrinkage and the water movement in the internal pore structure of 
RHA are studied experimentally. The autogenous shrinkage, relative humidity and water absorption of 
RHA are measured. Experimental results show that by adjusting the RHA particle size, the relative 
humidity inside UHPC increases and the autogenous shrinkage, caused by self-desiccation, were reduced 
effectively. 
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INTRODUCTION 

High performance concrete (HPC) and ultra high performance concrete (UHPC) shows excellent 
performances on durability and high compressive strength. However, HPC/UHPC usually experiences 
large autogenous shrinkage, which is caused by the very low water/binders ratio, and consequently takes 
high risk of early age cracking (Kovler et al., 2007). The early age cracking negates the numerous 
advantages of HPC/UHPC and thus considerably limits their prospective utilization in construction. 
Recent years, attempts are tried focusing on mitigating the autogenous shrinkage of HPC/UHPC. External 
curing and internal curing are two potential approaches for this problem. However, it have been reported 
that external curing is not effective enough to mitigate the autogenous shrinkage for HPC/UHPC because 
the microstructure of HPC/UHPC is so dense that the external water is difficult to penetrate into the 
concrete (Bentz et al., 2011). In comparison, internal curing is a more effective method to mitigate the 
autogenous shrinkage for HPC/UHPC. By now, water-saturated light weight aggregates (LWA) and 
superabsorbent polymers (SAP) are the most popular internal curing agents (Jensen et al., 2001, 2002). 
Unfortunately, because of the low strength, LWA as internal curing agents has negative effects on 
mechanical properties of HPC and even cannot be used in UHPC due to the strict requirements on the 
maximum size of aggregates for UHPC (Mechtcherine et al., 2008, Dudziak et al., 2008, Malhotra et al., 
1987). With respects to SAP, after the water transport into concrete, it leaves voids even as large as 600 
μm in concrete (Kovler et al., 2007, Bentz et al., 2011). This might also negatively influence the properties 
of HPC/UHPC. 
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Recent research in the Microlab, TU Delft was found that the rice husk ash (RHA) can be used as 
effective internal curing agents (Tuan, 2011) for HPE/UHPC. As an agriculture waste, rice husk ash (RHA) 
has been used a lot in construction industry in the role of supplementary cementitious materials to replace 
Portland cement. The main advantages of using RHA are the decrease of materials costs due to cement 
savings, environmental benefits related to the disposal of waste materials and the reduction of carbon 
dioxide emissions. Due to the internal nano/micro-porous structure (see Figure 1), the RHA suspects  to 
“hold” the absorbed water in the internal pores and reduce slowly during the hydration process, thus 
reduce the autogenous shrinkage. Moreover RHA has pozzolanic properties, which can be treated as silica 
fume replacement with beneficial to environments (Tuan, 2011).  

 

Figure 1. Internal nano/micro-porous structure of RHA  

However the mechanism of mitigation of autogenous shrinkage by RHA is still not clear. For example 
how the particle size of RHA influence on the efficiency of mitigation of autogenous shrinkage and how 
much the water can be hold in the internal pore structure of RHA are the important issues to study the 
shrinkage phenomena. This paper aims at a fundamental study on the mitigation of autogenous shrinkage 
by RHA. In the experimental program, three particle sizes of RHA and replacement level 20% are studied. 
Autogenous shrinkage and relative humidity are measured. The experimental results are discussed.    

MATERIALS AND METHODS 

Materials and mixture proportion 

The materials used in this study were Portland cement (CEM I 52.5N), RHA, silica sand with a particle 
size ranging 100 to 300 um, and a polycarboxylate-based superplasticizer (Glenium ACE30) with 30% 
solid content by weight. The RHA was produced by a drum incinerator developed by PCSIR (Cook, 1996) 
and modified by Bui (Bui, 2001). The ash was grinded to different particle size, i.e., the mean particle 
sizes of 3.6, 5.6 and 9.0 m. The properties of these ashes were shown in Table 1. The chemical 
composition of cement and RHA are shown in Table 2. 

Standard test (soluble silica) was used to evaluate amorphous silica in the rice husk ashes according to 
NEN-EN 192(2). The percentage of reactive silica contained in the RHA used in this research was more 
than 95%. 

Four types of UHPC mixtures were made. The mixture proportion is listed in Table 3. The dosage of 
superplasticizer was 3.5% solid by weight of binder. All mixtures were prepared in a 20-litre Hobart mixer, 
and followed the mixing procedure in (Tuan, 2011). 

 

 



Table 1 Properties of different types of RHA 

 RHA-3.6 RHA-5.6 RHA-9.0 

Mean particle sizes, μm 3.6 5.6 9.0 

Specific surface area (BET N2 absorption), m2/g 15.0 20.6 18.3 

Average pore width (BJH absorption), μm 18.12 20.94 23.73 

Total pore volume (BJH absorption), cm3/g 0.0610 0.0863 0,0876 

Table 2 Chemical composition of cement and RHA used in this study 
Components (Chemical properties, % by weight) Cement* RHA** 

CaO 64.00 1.14 

SiO2 24.00 87.96 

Al2O3 5.00 0.30 

Fe2O3 3.00 0.52 

SO3 2.40 0.47 

Na2O 0.30 - 

K2O - 3.29 

Loss on ignition (LOI) 1.30 3.81 

*) Data provided from the company 
**) Chemical composition determined by X-Ray Fluorescence Spectrometry method 
 

Table 3 Mix compositions of UHPC used to study autogenous shrinkage 

 

Mixture 

w/b ratio 

(by weight) 

Sand/binder ratio  

(by weight) 

RHA  

(%, by weight) 

The mean particle size of 
RHA (μm) 

REF 0.18 1 0  

RHA20-3.6 0.18 1 20 3.6 

RHA20-5.6 0.18 1 20 5.6 

RHA20-9.0 0.18 1 20 9.0 

 

Test method 

In the experimental program the autogenous deformation, autogenous relative humidity changes and 
sorption isotherm were carried out. 
Autogenous deformation measurement: The autogenous deformation of UHPC specimens was measured 
by dilation bench indicted in the ASTM C1698 standard developed by Jensen and Hansen (Jensen et al., 
1995), in which three sealed corrugated moulds of 440 mm × ф28.5 mm were tested for each mixture [see 
Figure 2]. After preparing and mixing, the fresh UHPC paste was carefully filled into three sealed 
corrugated tubes. All samples and test instrument were kept in a thermostatically controlled room during 
the whole test. The temperature was maintained at 20 centigrade degree. 
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CONCLUSION 

This paper studied the influence of particle size of RHA on the efficiency of mitigation of autogenous 
shrinkage and the water movement in the internal pore structure of RHA. Following conclusion are drawn: 

1. The addition of 20% of RHA in UHPC reduce autogenous shrinkage effectively when the mean size of 
RHA particles ranges between 5.6 μm and 9.0 μm. The sample containing the RHA with a smaller particle 
size, i.e. 3.6 μm, shows a higher autogenous shrinkage contrast to 5.6 μm and 9.0 μm samples. 

2. When the mean particle size of RHA is smaller than 5.6 m, i.e. 3.6 m, the internal RHA values 
decrease. However the values of internal RH values is much higher than those of reference sample. 

3. The specific surface area, internal pore size of RHA are main reason to hold the water in the small pore 
at early age hydration. 20% of RHA is enough to absorb enough water to mitigate the autogenous 
shrinkage caused by self-desiccation.  
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