Problems associated with the measurement of chloride diffusion in concrete

Peter Claisse and Juan Lizarazo Marriaga, Coventry University, Priory Street, Coventry CV1 5FB, UK

Presentation contents

- 1. Electromigration tests
- 2. "Traditional" diffusion tests

ASTM C1202 – Names for the Test

- Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration (in the ASTM).
- The Rapid Chloride Permeability Test (after Whiting – who invented the test)
- The Coulomb Test (it measures Coulombs)

ASTM C1202: Rapid Chloride Penetration Test (RCPT)

Charge Passed (coulombs)	Chloride Ion Penetrability		
>4,000	High		
2,000 - 4,000	Moderate		
1,000 – 2,000	Low		
100 – 1,000	Very low		
<100	Negligible		

The Problem

- At the start of the test there is no chloride in the sample so the current depends on other charge carriers (primarily OH-)
- Adding pozzolans to concrete depletes the OH- and can give misleading low results.
- Adding some accelerators with nitrates or other conducting ions can give misleading high results.

The new test

Using the mid-point voltage to identify cement replacements

Electro-diffusion model for chlorides in concrete

Nernst-Planck equation:

$$J_{i} = D_{i} \frac{\partial c_{i}}{\partial x} + \frac{z_{i}F}{RT} D_{i}c_{i} \frac{\partial E}{\partial x}$$
Diffusion Migration

• Charge electroneutrality (Kirchoff's law):

$$0 = F \sum_{i} z_{i} J_{i}$$

Solving the hard way -

assuming E is constant

$$I = FADc_o a \left[\frac{2}{\beta \sqrt{\pi}} e^{\left(\frac{\alpha}{2} - \frac{\alpha^2}{\beta^2} - \frac{\beta^2}{16}\right)} + \frac{1}{2} erfc\left(\frac{\alpha}{\beta} - \frac{\beta}{4}\right) \right]$$

where

$$a = \frac{zFE}{RT}$$

$$\alpha = ax$$

$$\beta = 2a\sqrt{Dt}$$

Section through sample during test

The Progress of a Chloride Ion

Membrane Potential

Modelling a thin slice of the sample for a short time step

Apply Kirchoff's law: current in = current out

Final adjustments are needed to get the correct total voltage across the sample.

Key innovation in the computer code

Current in amps at different times in hours vs position in mm from the negative side

Model output for current and voltage

Current vs time with no voltage correction (average)

Optimization Model

Experimental programme

		%		
Mix	w/b	OPC %	PFA %	GGBS %
OPC	0.49	100	0	0
30%PFA	0.49	70	30	0
50%GGBS	0.49	50	0	50

O Inputs of the neural network

Chloride related properties from voltage control model You can't get these with a 5 minute test!

"Traditional" diffusion test

For modelling:

- The boundary condition is not zero voltage because the ends of the sample are not short-circuited.
- A voltage can be measured.
- The voltage in the model is set to give zero current.

Traditional diffusion test (no applied voltage)

- (1) Current control model zero current (properties calculated)
- → (2) Model with non-zero current, no voltage correction (properties calculated)
- (3) Model with no binding, no voltage correction and just diffusion of CI (Dint-cl calculated)
- * (4) Equation 7 (Dint-cl calculated)
- (5) Equation 7 (Dint-Fick)

Equation (7) is the integral of Fick's law. Dint = Intrinsic diffusion coefficient (3) and (4) coincide – showing that the computer model gives the same results as integrating Fick's law if the ion-ion interactions are switched off. (5) Is based on experimental data

Future work on the Voltage Driven Test

Controlled power tests to avoid overheating.

 Voltage steps (or similar technique) to get the same results but avoid the need for a salt bridge.

Conclusions

- The electrical model can be used with an artificial neural network (ANN) to give good values for transport properties.
- Even when no voltage is applied, an electrical model is needed to simulate a diffusion test because of ion-ion interactions.

Thank you www.claisse.info

References:

J Lizarazo Marriaga and P Claisse Effect of non-linear membrane potential on the migration of ionic species in concrete Elecrochemica Acta Volume 54, Issue 10, 1 April 2009, Pages 2761-2769 2008.

Juan Lizarazo-Marriaga, Peter Claisse

Determination of the concrete chloride diffusion coefficient based on an electrochemical test and an optimization model

Materials Chemistry and Physics. VOL 117; NUMBER 2-3 (2009) pp. 536-543 (15 October 2009)

Peter A Claisse, Hanaa I Elsayad and Esmaiel Ganjian.

Modelling the rapid chloride permeability test,

Cement and Concrete Research Vol 40 no. 3 (2010), pp. 405-409 DOI information: 0.1016/j.cemconres.2009.10.004

Coventry University and The University of Wisconsin Milwaukee Centre for By-products Utilization

Second International Conference on Sustainable Construction Materials and Technologies

June 28 - June 30, 2010, Università Politecnica delle Marche, Ancona, Italy.

http://www4.uwm.edu/cbu/ancona.html