For citation information please see http://www.claisse.info/Publish.htm 2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Sources of Durability Problems

Types of Durability Problems

Concrete in a Structure

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Factors Affecting Durability

External factors					Internal causes			Structural Causes		
Weatherin	ng	Chemical A	ction		Mechanical action	Salts	Volume Changes	Alkali Aggregate Reaction	Joint Provis ion	Over- load
Freeze Thaw	Temperat ure and moisture variations	Inorganic Salts	Carbona tion	Acids	Water Wind Traffic					
Spall- ing and loss of strength	Cracking leading to loss of durability	May cau corrosion	se rebar	Surface	erosion	Chlorides may cause rebar corrosion	Cracking leading to loss of durability	May cause loss of strength and durability	Crackin leading of durab	to loss

Fig 2.9.4

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

What is being transported?

• Ions (e.g. Na⁺ and Cl⁻⁾ may move through the water

OR

• Water itself may move with the ions in it

The Transport Processes

- Pressure driven flow
- Diffusion,
- Electromigration
- Thermal migration

Processes which Promote or Inhibit Transport

- Adsorption (inhibits)
- Capillary suction (promotes)
- Osmosis (promotes)

Electromigration - Where Does the Voltage Come from?

• An external source such as leakage from a direct current power supply

• Electrical potential of pitting corrosion on reinforcing steel.

Factors Affecting Durability

Factors which can be controlled	Properties of the matrix	Transport Processes	Deterioration Processes
	Hydrate Structure	Pressure driven flow	Freeze-Thaw
Water to cement ratio	Pore interconnection (formation factor)	Diffusion	Sulphate Attack
Curing conditions	Porosity (total pore volume)	Electromigration	Alkali-silica reaction
Environmental conditions	Pore fluid content	Thermal Gradient	Reinforcement Corrosion
Degree of compaction	Pore fluid chemistry	Osmosis	Salt Crystallisation
Cement Type	Matrix chemistry	Capillary suction Adsorption	

Reduce the porosity with w/c ratio

Factors which can be controlled	Properties of the matrix	Transport Processes	Deterioration Processes
	Hydrate Structure	Pressure driven flow	Freeze-Thaw
Water to cement ratio	Pore interconnection (formation factor)	Diffusion	Sulphate Attack
Curing conditions	Porosity (total pore volume)	Electromigration	Alkali-silica reaction
Environmental conditions	Pore fluid content	Thermal Gradient	Reinforcement Corrosion
Degree of compaction	Pore fluid chemistry	Osmosis	Salt Crystallisation
Cement Type	Matrix chemistry	Capillary suction Adsorption	

PFA will reduce Electromigration

Factors which can be controlled	Properties of the matrix	Transport Processes	Deterioration Processes
	Hydrate Structure	Pressure driven flow	Freeze-Thaw
Water to cement ratio	Pore interconnection (formation factor)	Diffusion	Sulphate Attack
Curing conditions	Porosity (total pore volume)	Electromigration	Alkali-silica reaction
Environmental conditions	Pore fluid content	Thermal Gradient	Reinforcement Corrosion
Degree of compaction	Pore fluid chemistry	Osmosis	Salt Crystallisation
Cement Type	Matrix chemistry	Capillary suction Adsorption	

Using SRPC will reduce Adsorption

Factors which can be controlled	Properties of the matrix	Transport Processes	Deterioration Processes
	Hydrate Structure	Pressure driven flow	Freeze-Thaw
Water to cement ratio	Pore interconnection (formation factor)	Diffusion	Sulphate Attack
Curing conditions	Porosity (total pore volume)	Electromigration	Alkali-silica reaction
Environmental conditions	Pore fluid content	Thermal Gradient	Reinforcement Corrosion
Degree of compaction	Pore fluid chemistry	Osmosis	Salt Crystallisation
Cement Type	Matrix chemistry	Capillary suction Adsorption	

Curing has two distinct functions

1 To stop the concrete from drying out during hydration. If this occurs a significant loss of durability will occur.

2. To retain heat at the surface. This may be done for the following reasons

- i To prevent frost damage (below 5°C)
- ii To increase early strength
- iii To reduce temperature gradients

Types of Pores

Pore Sizes

Size range m	
$10^{-10} - 10^{-9}$	Ions, S^2 , Cl^2 , O^2
10 ⁻⁹ - 10 ⁻⁸	Gel pores: These are part of the hydrated cement structure, they are not interconnected and do not affect durability
10 ⁻⁸ - 10 ⁻⁶	Capillary pores: These are connected and considerably affect durability. Their volume may be calculated (see section 2.4). They are formed by excess water which does not react with the cement, either due to a high w/c ratio or insufficient hydration due to poor curing.
$10^{-4} - 10^{-3}$	Entrained air bubbles: Not interconnected.

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

The Corrosion Process

Moscow

Corrosion

 $4\text{Fe}(\text{OH})_2 + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{Fe}(\text{OH})_3$ (red rust - carbonation)

 $3Fe + 8OH^{-} \rightarrow Fe_{3}O_{4} + 8e^{-} + 4H_{2}O$ (black rust - chlorides)

The most significant deleterious agencies affecting passivity and thereby protection to reinforcement are:

- Carbonation (neutralisation of the alkaline pore fluid)
- Chloride ions

Carbonation depths

	Age Years			
Carbonation depth mm	20 MPa concrete	40 MPa concrete		
5	0.5	4		
10	2	16		
15	4	36		
20	7	64		
able 2.9.1 Ag	e of concrete for	different depths		

Table 2.9.1 Age of concrete for different depths of carbonation

Carbonation

The most significant deleterious agencies affecting passivity and thereby protection to reinforcement are:

- Carbonation (neutralisation of the alkaline pore fluid)
- Chloride ions

CHLORIDE CONTAINING ENVIRONMENT eg seawater, de-lcing salts

Schematic of chloride ingress

Schematic of binding with PFA

Cracks from Corrosion

Pitting

The consequences of the electrical nature of corrosion:

- Reducing the area of the anode (eg by coating part of the corroding steel) may increase corrosion elsewhere.
- Corroding areas may be located by measuring an increased anodic potential.
- Application of a positive potential to the surface of the concrete will stop the corrosion process (cathodic protection).
- Stray currents from welding, conductor rails, contact between different metals etc may produce rapid corrosion by creating an anodic region.
- Using a cementitious material with a high resistivity, such as a pozzolanic mix, will decrease corrosion.

Anode and Cathode on Structure

Fig. g – Current flow and potential distribution, (a) concrete in air, (b) concrete in sea water. Solid line, equipotential lines; dashed line, current flow.

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Sulphate Attack

Common sources of sulphate

- Groundwater
- Sulphate rich soils
- Sea water
- Demolition hardcore

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Frost Attack on Kerb

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Salt Crystallisation

In these two examples there is no damage to the structure (yet) On the left the water has come from the cooling units above. On the right it has probably come down the steps from outside. The source of the salt is not clear. These 2 locations are well away from the car park entrance.

2.9 DURABILITY THEORY

- 2.9.1 Introduction
- 2.9.2 Types of failure
- 2.9.3 Transport processes in concrete
- 2.9.4 Corrosion of reinforcement
- 2.9.5 Sulphate attack
- 2.9.6 Alkali-silica reaction
- 2.9.7 Frost attack
- 2.9.8 Salt crystallisation
- 2.9.9 Delayed Ettringite Formation
- Why Reinforced Concrete Structures Don't Fall Down

Why should they fall down?

- The corrosion process is a chemical reaction between oxygen (from the air) and the metal (steel).
- The air and water can move easily through the concrete to the steel.

The main reason why concrete structures don't fall down.

- The main products of the reaction between cement and water are:
- Calcium silicate hydrate (CSH gel) this is the main structural part.
- Lime (calcium hydroxide) this provides alkalinity that promotes the formation of the passive film that protects the steel.

Chlorides – break down the passive film. Where do they come from?

- External sources: road salt, sea water
- Internal sources: contaminated materials

Transport processes:

- Transport of fluids in solids: permeation (pressure driven flow), capillary suction, thermal gradient, osmosis, and electro-osmosis.
- Transport of ions in fluids: diffusion, electromigration.

How to reduce transport rates in your structures

Increase the depth of cover

or

Reduce the porosity (i.e. the volume of voids) by:

- Reducing the water/cementitious ratio
- Using pulverised fuel ash or Blastfurnace slag (refines the porosity)
- Locally reducing the w/c ratio with controlled permeability formwork
- Good compaction
- Good curing

How to measure the transport properties in your structure:

- Initial surface absorption test,
- Figg gas permeability test,
- Electrical resistivity tests

How the concrete stops the chlorides

- The four cement compounds that make up the CSH gel are:
- Dicalcium silicate, Tricalcium silicate, Tetracalcium alumino-ferrite, Tricalcium aluminate
- The aluminate reacts with chlorides to form immobile chloro-aluminates.

How to protect your structure by promoting the adsorption of chlorides

- Do not: Use sulphate resisting Portland cement it has a lower aluminate content.
- Do: Use pulverised fuel ash or blastfurnace slag. They have additional adsorption sites.

How the chlorides get moving again.... Carbonation

- The reaction between lime and carbon dioxide to produce carbonates
- Causes corrosion directly by removing alkalinity
- Makes chloro-aluminates unstable

How to reduce carbonation

- Reduce the transport of carbon dioxide by:
- Using a carbonation resisting coating or using concrete with lower transport rates (as for chlorides)

Corrosion is an electrical process; this may affect your structure in the following ways

- Application of a negative potential to the steel will stop corrosion (cathodic protection)
- Application of a positive potential to the steel (e.g. from welding) will cause corrosion.
- Using a concrete with a high electrical resistivity (e.g. with pfa) will reduce corrosion

Thank you www.claisse.info