A case study on environmental impact assessment of precast concrete products with a revegetation function

K. Kawai

Department of Civil and Environmental Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

A. Fujiki

Research & Development Laboratory, Landes Co. Ltd., Maniwa, Okayama, Japan

For citation information on this paper please see http://www.claisse.info/specialabstracts.htm

ABSTRACT: In this paper, a case study on environmental impact assessment of precast concrete products with a revegetation function was performed, and appropriate evaluation of the effect of revegetation on environmental impact reduction was discussed. The precast concrete structure studied here was a retaining wall. Environmental impacts in the material manufacturing and construction stages of a retaining wall using precast concrete with a revegetation function and a retaining wall placed in situ with ready-mixed concrete were compared. The retaining wall using precast concrete was constructed by piling hollow precast concrete boxes of which hollows were filled with soils emitted in the construction site. These boxes were planted. As a result, integrated environmental damage of the retaining wall using precast concrete was 35% smaller than that of the retaining wall using ready-mixed concrete. Especially the environmental damage regarding land use was largely different between two types of retaining walls. This is because of reuse of soils emitted in the site. But this is not a direct effect of revegetation. Based on this calculation result, a quantitative evaluation method for the revegetation function was discussed.

1 INTRODUCTION

To reduce environmental impact of a concrete structure, several countermeasures are conducted in stage of manufacturing of each materials, transportation, construction, maintenance. demolition, disposal and reuse after demolition. The effects of these actions on environmental impact reduction can be evaluated with some methods. As a typical method, the LCA method is used. LIME (Lifecycle Impact Assessment Method based on Endpoint Modeling) is an LCA method developed in Japan that can characterize and integrate different inventories such as CO₂, NO_x, SO_x and waste emissions (Yamaguchi 2003, JEMAI 2004). Although many kinds of inventories are considered with the characterization/integration method like LIME, even some factors cannot be dealt with. One of these factors is a revegetation function by constructing a structure. Indirect effects of revegetation on environmental impact could be evaluated with a current integration method, but not direct effects.

In this paper, a case study on environmental impact assessment of precast concrete products with a revegetation function was performed using LIME, appropriate evaluation of the effect of and revegetation on environmental impact reduction was discussed. There are many kinds of precast concrete products which have been designed based on environmental conservation thinking in the market. However, in practice, the performances of those products have not been assessed because of a lack of both background data and valuable assessment methods (JSCE 2004). The precast concrete structure studied here was a leaning-type retaining wall. Environmental impacts material in the manufacturing and construction stages of a retaining wall using precast concrete with a revegetation function and a retaining wall placed in situ with ready-mixed concrete were compared. The retaining wall using precast concrete was constructed by piling hollow precast concrete boxes of which hollows were filled with soils emitted in the construction site. These boxes were planted. Based on this calculation result, a quantitative evaluation

method for the revegetation function was discussed.

2 OUTLINE OF THE LEANING-TYPE RETAINING WALL

In this paper, leaning-type retaining wall works accompanying road construction on the slope of a mountain was studied (Kawai et al. 2005a). The following two cases of the construction of a retaining wall (height: 8.0 m, slope: 1:0.5, length: 120 m) were considered.

- Case-1: a leaning-type retaining wall using precast concrete products (hollow blocks)
- Case-2: a leaning-type retaining wall constructed with ready-mixed concrete in situ

For the leaning-type retaining wall of Case-1, hollow blocks (width: 1.5 m, length: 1.6 m, height: 1.0 m) are piled up before connecting them with ready-mixed concrete and steel bars. Surplus soil emitted during the construction is treated in the site

by being filled into the hollow blocks. Together with transportation of concrete products resulting in little concrete placing in situ, reduction of construction term and secure concrete quality can be expected.

Figure 1. Revegetation area by leaning-type retaining walls (7 years after construction).

Case-1: Retaining wall using hollow blocks

Case-2: Retaining wall constructed in situ

Figure 2. Schematic view of the leaning-type retaining walls studied.

Table 1. Total amounts for construction works in each case.

Materials and works	Unit	Case-1	Case-2
Soil excavation	m^3	1704	1799
Excavation for foundation	m^3	538	904
Backfill of foundation	m^3	241	420
Placing of hollow block	m^3	690	
Embankment	m^3	698	974
Crushed stone for backfill	m ³ (t)	444 (910)	542 (1111)
Hollow block	Number (t)	560~(753)	
Steel bar	\mathbf{t}	3.3	
Ready-mixed concrete	m^3	264	1320
Wood form	$m^{2}(t)$	278(1.7)	2054 (12.3)
Scaffold work	m^2		1326
Surplus soil	m ³ (t)	517 (646)	1385 (1731)
Revegetation	m^2	360	

Furthermore, it is possible to revegetate the construction site by planting the hollow blocks as shown in Figure 1. The schematic view of the retaining walls is shown in Figure 2. Total amounts for construction works in each case are listed in Table 1.

3 METHOD OF THE ENVIRONMENTAL IMPACT ASSESSMENT

An environmental impact assessment was performed using LIME whose evaluations are based on Japanese weather and the country's geographical conditions. The LIME method sets forth four objects of protection consisting of human health, public assets, biodiversity and primary production capacity, which have unique indexes consisting of DALY (Disability-Adjusted Life Year, unit: year), YEN (Japanese monetary unit, unit: yen), EINES (Expected Increase Numbers of Extinct Species, unit: species) and NPP (Net Primary Productivity, unit: t/ha/year), respectively (Kawai et al. 2005a). The degree of environmental impact can be evaluated with these four indexes and furthermore with a single index that is an integrated index of these four indexes.

In this case study, the manufacturing of materials, transportation of materials, construction, waste treatment, material recycling and change of land use were estimated. As environmental impact, the uses of oil, coal, natural gas, purchased electricity, non-metallic minerals and iron and the emissions of CO_2 , SO_X , NO_X and particulate matter were estimated.

To evaluate the revegetation on the hollow blocks in Case-1, the followings are assumed based on categories of land use in LIME shown in Tables 2 & 3: 1200 m² of "forest" were changed to 360 m² of "other groves" and 840 m² of "road," and the land uses were maintained for 50 years. Regarding the construction works, the road construction work was adopted as the EINES damage factors of works shown in Table 4, in this case study.

4 INVENTORY ANALYSIS

Total amounts used for calculation of each case are listed in Table 5 and emission inventory data in Tables 6-8 (Kawai et al. 2005b). The inventory analysis was performed using the amounts of each emission per unit, and the output data are shown in Tables 9-17.

Table 2. NPP damage factors for maintenance of land use.

Land use	Damage factor					
	(t/ha/yr)					
Rice field	3					
Field	2					
Fruit farm	4					
Other grove	3					
Forest	1					
Rough	2					
Building	14					
Road	13					
Others	7					

Table 4. EI	NES damage	factors	for	works.
-------------	------------	---------	-----	--------

Kind of works	Damage factor
	(EINES/na)
Road construction	3.64 x 10 ⁻⁶
Mining of soil and stone	$9.83 \ge 10^{-7}$
Construction of final disposal grounds	$4.75 \ge 10^{-6}$
Others	$1.18 \ge 10^{-6}$

Table 3. NPP damage factors for change of land use.

After	Rice	Field	Fruit	Other	Forest	Rough	Build-	Road	Others
Before	field		farm	grove			ing		
Rice field	0	-18	13	9	-42	-20	975	963	67
Field	18	0	32	27	-23	-1	993	981	85
Fruit farm	-13	-32	0	-4	-55	-33	961	949	53
Other grove	-9	-27	4	0	-51	-29	966	954	58
Forest	42	23	55	51	0	22	1017	1005	109
Rough	20	1	33	29	-22	0	995	983	87
Building	-975	-993	-961	-966	-1017	-995	0	-12	-908
Road	-963	-981	-949	-954	-1005	-983	12	0	-896
Others	-67	-85	-53	-58	-109	-87	908	896	0

Unit of damage factors: t/ha

				Unit	Case-1	Case-2
Manufacture of materials	Hollow block	Material	Blast furnace slag cement (Type B)	t	110	
			Fine aggregate	t	242	
			Coarse aggregate	t	366	
			Steel bar	t	13	
		Production	Process in plant	t	773	
			Form vibrator	h	93	
			Steam curing	m^3	326	
	Ready-mixed concrete	Material	Blast furnace slag cement (Type B)	t	68	338
			Fine aggregate	\mathbf{t}	217	1085
			Coarse aggregate	\mathbf{t}	295	1474
		Production	Process in plant	\mathbf{t}	621	3103
	Steel bar			\mathbf{t}	3	
	Crushed stone for backfill			\mathbf{t}	910	1111
Transportation	Ready-mixed concrete	Agitator true	ck (4.5 m ³)	km.m ³	10560	52,800
of materials	Crushed stone for backfill	Truck (10t)		km.t	91000	111100
	Hollow block	Truck (10t)		km.t	75300	
	Steel bar	Truck (10t)		km.t	330	
	Wood form	Truck (10t)		km.t	170	1230
Construction	Soil excavation	Excavator (0	0.6 m ³)	h	46	49
	Excavation for foundation	Excavator (0	0.6 m ³)	h	14	25
	Placing of hollow block	Truck crane	(15-16t)	h	90	
	Backfill of foundation	Excavator (0	0.6 m ³)	h	10	17
		Tamper (60-	100kg)	h	43	76
	Crushed stone for backfill	Excavator (0	0.6 m^{3}	h	70	86
	Embankment	Excavator (0	0.6 m^{3}	h	28	39
		Tamper (60-	100kg)	h	125	175
	Compaction in hollow	Excavator (0	0.6 m^{3}	h	28	
		Tamper (60-	100kg)	h	124	
	Scaffold work	Wheel crane	(25t)	h		64
	Placing of ready-mixed	Agitator true	$ck (4.5m^3)$	h	60	294
	concrete	Truck crane	h	36	60	
Waste treatment	Surplus soil			\mathbf{t}	646	1731

Table 5. Total amounts used for calculation in each case.

Table 6. Emission inventory data (manufacture of materials).

Table	Table 6. Emission inventory data (manufacture of materials).										
				Manufacture	e of materials						
		Blast furnace slag cement (Type B)	Fine aggregate (Natural, crushed)	Coarse aggregate (Natural, crushed)	Electric furnace steel	Concrete plant	Form vibrator (0.1kW)				
Uni	t	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	h				
Inpu	ut energy (GJ)	2.281	0.077	0.053	4.239	0.115	0.000				
c	Oil (kg)	13.1	0.4	0.4	3.6	2.1	0.0				
tio	Coal (kg)	56.8	0.0	0.0	71.8	0.0	0.0				
du	Natural gas (kg)	0.00	0.00	0.00	0.00	0.32	0.00				
aur	Purchased power (kWh)	30.06	6.19	4.32	337.70	0.64	0.05				
ons	Non-metal mineral (kg)	715.0	1000.0	1000.0	33.4	0.0	0.0				
C	Iron (kg)	0.0	0.0	0.0	93.2	0.0	0.0				
Mat	erial recycling (wet-kg)	85.1	0.0	0.0	0.0	0.0	0.0				
	Waste (wet-kg)	0.0	0.0	0.0	6.6	0.0	0.0				
on	CO_2 (kg)	457.65	3.50	2.75	755.29	7.68	0.02				
SSI.	SOx (kg)	0.0808649	0.0042445	0.0060692	0.1339010	0.0034197	0.0000070				
mi	NO _X (kg)	0.91871	0.00749	0.00415	0.12403	0.06505	0.00001				
E	Particulate matter (kg)	0.0217816	0.0019910	0.0014131	0.0101310	0.0033092	0.0000016				

		Manuf. of materials	Aanuf. of Transportation of naterials materials		Constructio	n	
		Steam curing	Truck (10t)	Agitator truck (4.5m ³)	Agitator truck (4.5m ³)	Excavator (0.6m ³)	Truck crane (15- 16t)
Uni	t	m^3	km.t	km.m ³	h	h	h
Inpu	at energy (GJ)	0.593	0.002	0.004	0.488	0.747	0.239
ц	Oil (kg)	9.9	0.0	0.1	11.0	16.8	5.4
tio	Coal (kg)	0.0	0.0	0.0	0.0	0.0	0.0
du	Natural gas (kg)	0.00	0.00	0.00	0.00	0.00	0.00
Ins	Purchased power (kWh)	10.35	0.00	0.00	0.00	0.00	0.00
on	Non-metal mineral (kg)	0.0	0.0	0.0	0.0	0.0	0.0
0	Iron (kg)	0.0	0.0	0.0	0.0	0.0	0.0
Mat	erial recycling (wet-kg)	0.0	0.0	0.0	0.0	0.0	0.0
	Waste (wet-kg)	0.0	0.0	0.0	0.0	0.0	0.0
uo	CO_2 (kg)	38.48	0.12	0.25	33.78	51.69	16.52
ssi	SOx (kg)	0.0241081	0.0000941	0.0001948	0.0260086	0.0397902	0.0127194
mi	NO _X (kg)	0.03172	0.00091	0.00379	0.25262	0.77439	0.12354
E	Particulate matter (kg)	0.0347691	0.0000768	0.0001922	0.0212267	0.0392549	0.0103808

Table 7. Emission inventory data (manufacture of materials, transportation of materials and construction).

Table 8. Emission inventory data (construction, waste treatment and purchased power).

Quarter of the second seco

		Constructio	on	waste treatment	Durchagod	
		Wheel crane (25t)	Tamper (60- 100kg)	Surplus soil	power	
Uni	t	h	h	t	kWh	
Inpu	ut energy (GJ)	0.774	0.032	0.024	0.009	
ц	Oil (kg)	17.4	0.7	0.5	0.1	
tio	Coal (kg)	0.0	0.0	0.0	0.1	
np	Natural gas (kg)	0.00	0.00	0.00	0.02	
Ins	Purchased power (kWh)	0.00	0.00	0.00		
uo	Non-metal mineral (kg)	0.0	0.0	0.0	0.0	
Ŭ	Iron (kg)	0.0	0.0	0.0	0.0	
Mat	erial recycling (wet-kg)	0.0	0.0	0.0	0.0	
	Waste (wet-kg)	0.0	0.0	1000.0	0.0	
on	CO_2 (kg)	53.57	2.15	1.64	0.37	
.ssi	SOx (kg)	0.0412413	0.0000005	0.0012617	0.0001300	
mi	NO _X (kg)	0.80263	0.00001	0.02456	0.00016	
E	Particulate matter (kg)	0.0406864	0.0000005	0.0012447	0.0000300	

Table 9	9. 1	Inventory	analysi	s for	• hollow	blocks	in	Case-1	1 in	terms of	f manı	ıfacture	of m	naterials	
---------	------	-----------	---------	-------	----------	--------	----	--------	------	----------	--------	----------	------	-----------	--

			Material				Productio	n	
			Blast furnace slag cement (Type B)	Fine aggregate	Coarse aggregate	Steel bar	Process in plant	Form vibrator	Steam curing
Unit	t		t	t	t	t	t	h	m^3
Inpu	ut energy (GJ)		251	19	19	57	89	0	193
u	Oil (kg)		1443	89	136	48	1645	0	3230
tio	Coal (kg)		6242	0	0	962	0	0	0
dw	Natural gas (kg)		0	0	0	0	247	0	0
ins	Purchased power (kWh)		3304	1498	1582	4525	495	5	3374
on	Non-metal mineral (kg)		78582	241900	366400	448	0	0	0
C	Iron (kg)		0	0	0	1249	0	0	0
Mat	erial recycling	g (wet-kg)	9355	0	0	0	0	0	0
	Waste (wet-l	kg)	0	0	0	88	0	0	0
	CO_2 (kg)		50296	847	1008	10121	5935	2	12544
	SOx (kg)		9	1	2	2	3	0	8
sion	NOv (kg)	Stationary resource	101	2	2	2	50	0	10
Imis	NOX (Kg)	Moving resource							
<u> </u>	Particulate	Stationary resource	2	0	1	0	3	0	11
	matter (kg)	Moving resource							

Table 10. Inventory analysis for materials and production in Case-1 in terms of manufacture of materials.

			Material			دىر		
			Blast furnace slag cement (Type B)	Fine aggregate	Coarse aggregate	Production process in plan	Steel bar	Crushed stone for backfill
Unit			\mathbf{t}	\mathbf{t}	\mathbf{t}	t	\mathbf{t}	\mathbf{t}
Inpu	t energy (GJ)		251	19	19	89	14	48
ц	Oil (kg)		1443	89	136	1645	12	338
sumptio	Coal (kg)		6242	0	0	0	237	0
	Natural gas	(kg)	0	0	0	247	0	0
	Purchased p	ower (kWh)	3304	1498	1582	495	1114	3929
on	Non-metal m	nineral (kg)	78582	241900	366400	0	110	910000
0	Iron (kg)		0	0	0	0	308	0
Mate	erial recycling	(wet-kg)	9355	0	0	0	0	0
	Waste (wet-k	(g)	0	0	0	0	22	0
	$\rm CO_2$ (kg)		50296	847	1008	5935	2492	2503
	SOx (kg)		9	1	2	3	0	6
sion	NO: (l)	Stationary resource	101	2	2	50	0	4
Imis	NOX (Kg)	Moving resource						
ьщ	Particulate	Stationary resource	2	0	1	3	0	1
	matter (kg)	Moving resource						

Table 11. Inventory analysis for materials and production in Case-2 in terms of manufacture of materials.

			Material			с н		
			Blast furnace slag cement (Type B)	Fine aggregate	Coarse aggregate	Production process in plan	Steel bar	Crushed stone for backfill
Uni	t		\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}
Inpu	ut energy (GJ)							59
ц	Oil (kg)							413
tio	Coal (kg)							0
du	Natural gas	(kg)						0
ins	Purchased p	ower (kWh)						4797
ons	Non-metal n	nineral (kg)						1111000
Ŭ	Iron (kg)	-						0
Mat	erial recycling	(wet-kg)						0
	Waste (wet-	xg)						0
	$\rm CO_2$ (kg)	0						3056
	SOx (kg)							7
sion		Stationary resource						5
Imis	NOX (Kg)	Moving resource						
щ	Particulate	Stationary resource						2
	matter (kg)	Moving resource						

Table 12. Inventory analysis in Case-1 in terms of transportation of materials.

			Ready-mixed concrete / Agitator truck (4.5m ³)	Crushed stone for backfill / Truck (10t)	Hollow block / Truck (10t)	Steel bar / Truck (10t)	Wood form / Truck (10t)
Unit	;		$km.m^3$	km.t	km.t	km.t	km.t
Inpu	it energy (GJ)		39	161	133	1	0
n	Oil (kg)		866	3607	2985	13	7
tic	Coal (kg)		0	0	0	0	0
mp	Natural gas	(kg)	0	0	0	0	0
ns	Purchased p	ower (kWh)	0	0	0	0	0
on	Non-metal n	nineral (kg)	0	0	0	0	0
0	Iron (kg)		0	0	0	0	0
Mat	erial recycling	(wet-kg)	0	0	0	0	0
	Waste (wet-k	(g)	0	0	0	0	0
	CO_2 (kg)		2672	11128	9208	40	21
	SOx (kg)		2	9	7	0	0
ssion	NOx (kg)	Stationary resource					
Emis	non (ng/	Moving resource	40	83	69	0	0
	Particulate	Stationary resource					
	matter (kg)	Moving resource	2	7	6	0	0

Table 13. Inventory analysis in Case-2 in terms of transportation of materials.

			Ready-mixed concrete / Agitator truck (4.5m ³)	Crushed stone for backfill / Truck (10t)	Hollow block / Truck (10t)	Steel bar / Truck (10t)	Wood form / Truck (10t)
Unit	;		$km.m^3$	km.t	km.t	km.t	km.t
Inpu	ıt energy (GJ)		193	196			2
u	Oil (kg)		4331	4404			49
tic	Coal (kg)		0	0			0
dub	Natural gas	(kg)	0	0			0
ns	Purchased p	ower (kWh)	0	0			0
on	Non-metal m	nineral (kg)	0	0			0
C	Iron (kg)		0	0			0
Mat	erial recycling	(wet-kg)	0	0			0
	Waste (wet-k	(g)	0	0			0
	$\rm CO_2$ (kg)	-	13362	13586			150
	SOx (kg)		10	10			0
sion	NO: (l-m)	Stationary resource					
Emis	NOX (Kg)	Moving resource	200	102			1
_	Particulate	Stationary resource					
	matter (kg)	Moving resource	10	9			0

Table 14. Inventory analysis in Case-1 in terms of construction.

			Soil excavation / Excavator (0.6m ³)	Excavation for foundation / Excavator (0.6m ³)	Placing of hollow block / Truck crane (15-16t)	Backfill of foundation / Excavator (0.6m ³)	Backfill of foundation / Tamper (60-100kg)	Crushed stone for backfill / Excavator (0.6m ³)	Embankment / Excavator (0.6m ³)
Unit	5		h	h	h	h	h	h	h
Inpu	ıt energy (GJ)		35	11	21	7	1	52	21
u	Oil (kg)		774	241	482	161	31	1176	467
tic	Coal (kg)		0	0	0	0	0	0	0
du	Natural gas	(kg)	0	0	0	0	0	0	0
ns	Purchased p	ower (kWh)	0	0	0	0	0	0	0
on	Non-metal n	nineral (kg)	0	0	0	0	0	0	0
U	Iron (kg)		0	0	0	0	0	0	0
Mat	erial recycling	(wet-kg)	0	0	0	0	0	0	0
	Waste (wet-l	(g)	0	0	0	0	0	0	0
	CO_2 (kg)		2388	744	1487	496	93	3628	1442
	SOx (kg)		2	1	1	0	0	3	1
sion	NOv (kg)	Stationary resource	36	11	11	7	0	54	22
Emis	NOX (Kg)	Moving resource							
_	Particulate	Stationary resource	2	1	1	0	0	3	1
	matter (kg)	Moving resource							

Table 15. Inventory analysis in Case-2 in terms of construction.

			Soil excavation / Excavator (0.6m ³)	Excavation for foundation / Excavator (0.6m ³)	Placing of hollow block / Truck crane (15-16t)	Backfill of foundation / Excavator (0.6m ³)	Backfill of foundation / Tamper (60-100kg)	Crushed stone for backfill / Excavator (0.6m ³)	Embankment / Excavator (0.6m ³)
Unit	;		h	h	h	h	h	h	h
Inpu	it energy (GJ)		37	18		13	2	64	29
n	Oil (kg)		824	412		281	55	1438	653
otic	Coal (kg)		0	0		0	0	0	0
mp	Natural gas	(kg)	0	0		0	0	0	0
nsı	Purchased p	ower (kWh)	0	0		0	0	0	0
on	Non-metal m	nineral (kg)	0	0		0	0	0	0
\circ	Iron (kg)		0	0		0	0	0	0
Mat	erial recycling	(wet-kg)	0	0		0	0	0	0
	Waste (wet-k	(g)	0	0		0	0	0	0
	CO_2 (kg)		2543	1271		868	162	4435	2016
	SOx (kg)		2	1		1	0	3	2
sion	NOv (kg)	Stationary resource	38	19		13	0	66	30
Emis	IVOX (Kg)	Moving resource							
	Particulate	Stationary resource	2	1		1	0	3	2
	matter (kg)	Moving resource							

Table 16. Inventory analysis in Case-1 in terms of construction and waste treatment.

			Embankment / Tamper (60-100kg)	Compaction in hollow / Excavator (0.6m ³)	Compaction in hollow / Tramper (60-100kg)	Scaffold work / Wheel crane (25t)	Placing of ready- mixed concrete / Agitator truck (4.5m ³)	Tracting of ready mixed concrete / Truck crane (15- 16t)	Waste treatment for surplus soil
Unit	,		h	h	h	h	h	h	\mathbf{t}
Inpu	it energy (GJ)		4	21	4		29	9	15
u	Oil (kg)		91	462	90		657	193	341
tic	Coal (kg)		0	0	0		0	0	0
mp	Natural gas	(kg)	0	0	0		0	0	0
ns	Purchased p	ower (kWh)	0	0	0		0	0	0
on	Non-metal n	nineral (kg)	0	0	0		0	0	0
\circ	Iron (kg)		0	0	0		0	0	0
Mate	erial recycling	(wet-kg)	0	0	0		0	0	0
	Waste (wet-k	(g)	0	0	0		0	0	646000
	CO_2 (kg)		269	1427	266		2027	595	1059
	SOx (kg)		0	1	0		2	0	1
sion	NOv (kg)	Stationary resource	0	21	0		15	4	16
Emis	IVOX (Kg)	Moving resource							
_	Particulate	Stationary resource	0	1	0		1	0	1
	matter (kg)	Moving resource							

Table 17. Inventory analysis in Case-2 in terms of construction and waste treatment.

			Embankment / Tamper (60-100kg)	Compaction in hollow / Excavator (0.6m ³)	Compaction in hollow / Tramper (60-100kg)	Scaffold work / Wheel crane (25t)	Placing of ready- mixed concrete / Agitator truck (4.5m ³)	Placing of ready- mixed concrete / Truck crane (15- 16t)	Waste treatment for surplus soil
Unit	-		h	h	h	h	h	h	\mathbf{t}
Inpu	ıt energy (GJ)		6			49	144	14	41
u	Oil (kg)		126			1104	3220	321	915
tic	Coal (kg)		0			0	0	0	0
mp	Natural gas	(kg)	0			0	0	0	0
ns	Purchased p	ower (kWh)	0			0	0	0	0
on	Non-metal n	nineral (kg)	0			0	0	0	0
\circ	Iron (kg)		0			0	0	0	0
Mat	erial recycling	(wet-kg)	0			0	0	0	0
	Waste (wet-l	(g)	0			0	0	0	1731000
	CO_2 (kg)		376			3407	9932	991	2837
	SOx (kg)		0			3	8	1	2
sion	NOv (kg)	Stationary resource	0			51	74	7	43
Emis	NOX (Kg)	Moving resource							
	Particulate	Stationary resource	0			3	6	1	2
	matter (kg)	Moving resource							

Table 18. Inventory analysis (total amounts).

	Input energy			Consumption				
	(GJ)	Oil Coal		oal 1	Vatural gas	Non-metal	Iron resource	
		(kg)	(k	(g)	(kg)	mineral (kg)	(kg)	
Case-1	1,736	24972	130	022	943	2157676	1557	
Case-2	2,428	34144	212	294	294 1594		0	
C-1/C-2	71%	73%	61	1%	59%	55%		
				Emissio	n			
	Waste	CO_2	SOx		NO _X (kg)	Particula	te matter (kg)	
	(wet-kg)	(kg)	(kg)	Stationa	ry Movin	g Stationary	y Moving	
Case-1	343	171218	73	478	193	35	15	
Case-2	932	256429	105	878	303	44	19	
C-1/C-2	37%	67%	70%	54%	64%	79%	79%	

C-1/C-2 represents a ratio of the amount for Case-1 to the amount for Case-2.

Table 18 shows the total emission obtained from the inventory analysis for each case. Since the use of hollow blocks leads to reduction of concrete volume, every emission amount except for the use of iron resource became lower in Case-1 than in Case-2. Especially, the waste emission in Case-1 was 63% lower compared with Case-2.

5 DAMAGE AMOUNTS

Damage amounts were calculated using an inventory analysis method based on the data of resource consumptions, waste emissions, emissions of CO_2 , NO_X , SO_X and particulate matter, areas of change of land use and maintenance periods of land use. Figures 3-6 show the damage amounts of four indexes, namely, human health, public assets, biodiversity and primary production capacity. Case-1 shows a lower damage amount than Case-2 in every category, such as 30% lower in human health, 32% in public assets, 14% in biodiversity and 34% in primary production capacity. Large reductions in damage amounts for human health and public assets were related to emissions of CO_2 , NO_2 and PM10. Waste emission influenced the damage amounts for biodiversity and primary production capacity. In addition, the change and maintenance period of land use also largely influenced the results, especially for primary production capacity.

6 INTEGRATION RESULTS

Four indexes of damage amounts consisting of human health, public assets, biodiversity and primary production capacity were integrated using LIME vers. 1 to 3. LIME ver. 1 is an environmental assessment method based on a conjoint analysis, and has a monetary unit. It is usually used for cost benefit analysis, environmental accounting and full cost estimation. LIME ver. 2 is also based on a conjoint analysis, but has no such unit. LIME ver. 3 is calculated based on the analytic hierarchy process (AHP) and has no such unit. The integration results are shown in Figures 7-9. The environmental impacts for Case-1 calculated with LIME vers. 1 and 2 were 27% lower than those for Case-2, while the impact for Case-1 was 28% lower with LIME ver.3. This reduction was derived from the change of land use and its subsequent maintenance, waste emissions and emissions of CO₂, NO_X, SO_X and particulate matter.

Figure 3. Damage amounts of human health.

Figure 5. Damage amounts of biodiversity.

Figure 4. Damage amounts of public assets.

Figure 6. Damage amounts of primary production capacity.

Figure 7. Integration results by LIME ver. 1.

Figure 9. Integration results by LIME ver. 3.

Since LIME ver.1 has a monetary unit, cost analysis was also performed by considering the environmental impact as an external cost due to construction. From the cost result shown in Figure 10 using LIME ver.1, it is found that Case-1 gave a lower external cost than Case-2, as well as a lower internal cost.

7 EFFECTS OF REVEGETATION ON ENVIRONMENTAL IMPACT REDUCTION

In addition to the integration results of Case-1 and Case 2 by LIME ver. 1, the following two cases were estimated by LIME ver. 1.

Figure 8. Integration results by LIME ver. 2.

Figure 10. Estimation of internal and external costs.

- Case1-A: The revegetation on the hollow blocks was considered as "forest" in the categories of land use in LIME shown in Tables 2 & 3, that means the categories did not changed before and after construction.
- Case1-B: The revegetation on the hollow blocks was not performed.

The estimation results are shown in Figure 11 together with the integration results of Case-1 and Case-2. The environmental impacts for Case1-A and Case1-B were 35% and 15% lower than those for Case-2, respectively. The environmental impacts for Case-1 were 15% lower than those for Case1-B.

Therefore it is estimated that revegetation can reduce environmental impact by 15%.

8 CONCLUSIONS

According to these two case studies. the environmental impact of Case-1 (a retaining wall using hollow blocks) could be reduced by approximately 30% compared with that of Case-2 (a retaining wall constructed in situ) because of the reduction of concrete by using the hollow blocks. The change of land use and its subsequent maintenance also largely related to this reduction. The revegetation function of the hollow blocks also greatly contributed to the reduction of environmental impact. Furthermore, the cost result shows that the external cost corresponded to 17% of the construction cost for Case-1 and 23% for Case-2. If this expense must be borne by a contractor or concrete product maker, they will have a serious problem.

9 REFERENCES

- JEMAI. 2004. Report on Development of Assessment Technology of Life Cycle Environmental Impacts of Products and So Forth. Japan Environmental Management Association for Industry. (in Japanese)
- JSCE. 2004. Assessment for Environmental Impact of Concrete (Part 2), Japan Society of Civil Engineers, Concrete Engineering Series 62.

Kawai, K., Sugiyama, T., Kobayashi, K., & Sano, S.

2005a. A Proposal of Concrete Structure Design Methods Considering Environmental Performance, *Journal of Advanced Concrete Technology*, 3(1), 41-51.

- Kawai, K., Sugiyama, T., Kobayashi, K., & Sano, S. 2005b. Inventory Data and Case Studies for Environmental Performance Evaluation of Concrete Structure Construction, *Journal of* Advanced Concrete Technology, 3(3), 435-456.
- Yamaguchi, S. 2003. Efforts for the Diffusion of Performance-based Evaluation Contract Methos with a Technical Proposal, 2003 Annual Report of NILIM (National Institute for Land and Infrastructure Management), 103.